3.254 \(\int \frac {\sec ^3(e+f x)}{\sqrt {d \tan (e+f x)}} \, dx\)

Optimal. Leaf size=79 \[ \frac {2 \sec (e+f x) \sqrt {d \tan (e+f x)}}{3 d f}+\frac {2 \sqrt {\sin (2 e+2 f x)} \sec (e+f x) F\left (\left .e+f x-\frac {\pi }{4}\right |2\right )}{3 f \sqrt {d \tan (e+f x)}} \]

[Out]

-2/3*(sin(e+1/4*Pi+f*x)^2)^(1/2)/sin(e+1/4*Pi+f*x)*EllipticF(cos(e+1/4*Pi+f*x),2^(1/2))*sec(f*x+e)*sin(2*f*x+2
*e)^(1/2)/f/(d*tan(f*x+e))^(1/2)+2/3*sec(f*x+e)*(d*tan(f*x+e))^(1/2)/d/f

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2613, 2614, 2573, 2641} \[ \frac {2 \sec (e+f x) \sqrt {d \tan (e+f x)}}{3 d f}+\frac {2 \sqrt {\sin (2 e+2 f x)} \sec (e+f x) F\left (\left .e+f x-\frac {\pi }{4}\right |2\right )}{3 f \sqrt {d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^3/Sqrt[d*Tan[e + f*x]],x]

[Out]

(2*EllipticF[e - Pi/4 + f*x, 2]*Sec[e + f*x]*Sqrt[Sin[2*e + 2*f*x]])/(3*f*Sqrt[d*Tan[e + f*x]]) + (2*Sec[e + f
*x]*Sqrt[d*Tan[e + f*x]])/(3*d*f)

Rule 2573

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2613

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2*(a*Sec[
e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1))/(b*f*(m + n - 1)), x] + Dist[(a^2*(m - 2))/(m + n - 1), Int[(a*Sec
[e + f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || (EqQ[m, 1] && EqQ[
n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 2614

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sec ^3(e+f x)}{\sqrt {d \tan (e+f x)}} \, dx &=\frac {2 \sec (e+f x) \sqrt {d \tan (e+f x)}}{3 d f}+\frac {2}{3} \int \frac {\sec (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx\\ &=\frac {2 \sec (e+f x) \sqrt {d \tan (e+f x)}}{3 d f}+\frac {\left (2 \sqrt {\sin (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \sqrt {\sin (e+f x)}} \, dx}{3 \sqrt {\cos (e+f x)} \sqrt {d \tan (e+f x)}}\\ &=\frac {2 \sec (e+f x) \sqrt {d \tan (e+f x)}}{3 d f}+\frac {\left (2 \sec (e+f x) \sqrt {\sin (2 e+2 f x)}\right ) \int \frac {1}{\sqrt {\sin (2 e+2 f x)}} \, dx}{3 \sqrt {d \tan (e+f x)}}\\ &=\frac {2 F\left (\left .e-\frac {\pi }{4}+f x\right |2\right ) \sec (e+f x) \sqrt {\sin (2 e+2 f x)}}{3 f \sqrt {d \tan (e+f x)}}+\frac {2 \sec (e+f x) \sqrt {d \tan (e+f x)}}{3 d f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.27, size = 68, normalized size = 0.86 \[ \frac {2 \sin (e+f x) \left (2 \sqrt {\sec ^2(e+f x)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\tan ^2(e+f x)\right )+\sec ^2(e+f x)\right )}{3 f \sqrt {d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^3/Sqrt[d*Tan[e + f*x]],x]

[Out]

(2*(Sec[e + f*x]^2 + 2*Hypergeometric2F1[1/4, 1/2, 5/4, -Tan[e + f*x]^2]*Sqrt[Sec[e + f*x]^2])*Sin[e + f*x])/(
3*f*Sqrt[d*Tan[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.56, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {d \tan \left (f x + e\right )} \sec \left (f x + e\right )^{3}}{d \tan \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(d*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*tan(f*x + e))*sec(f*x + e)^3/(d*tan(f*x + e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (f x + e\right )^{3}}{\sqrt {d \tan \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(d*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(f*x + e)^3/sqrt(d*tan(f*x + e)), x)

________________________________________________________________________________________

maple [B]  time = 0.63, size = 196, normalized size = 2.48 \[ -\frac {\left (-1+\cos \left (f x +e \right )\right ) \left (2 \cos \left (f x +e \right ) \sin \left (f x +e \right ) \sqrt {\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {-\sin \left (f x +e \right )-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {-\frac {-\sin \left (f x +e \right )-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-\cos \left (f x +e \right ) \sqrt {2}+\sqrt {2}\right ) \left (1+\cos \left (f x +e \right )\right )^{2} \sqrt {2}}{3 f \cos \left (f x +e \right )^{2} \sqrt {\frac {d \sin \left (f x +e \right )}{\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^3/(d*tan(f*x+e))^(1/2),x)

[Out]

-1/3/f*(-1+cos(f*x+e))*(2*cos(f*x+e)*sin(f*x+e)*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))
/sin(f*x+e))^(1/2)*(-(-sin(f*x+e)-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF((-(-sin(f*x+e)-1+cos(f*x+e))/sin(f
*x+e))^(1/2),1/2*2^(1/2))-cos(f*x+e)*2^(1/2)+2^(1/2))*(1+cos(f*x+e))^2/cos(f*x+e)^2/(d*sin(f*x+e)/cos(f*x+e))^
(1/2)/sin(f*x+e)^3*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (f x + e\right )^{3}}{\sqrt {d \tan \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(d*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)^3/sqrt(d*tan(f*x + e)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\cos \left (e+f\,x\right )}^3\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(e + f*x)^3*(d*tan(e + f*x))^(1/2)),x)

[Out]

int(1/(cos(e + f*x)^3*(d*tan(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{3}{\left (e + f x \right )}}{\sqrt {d \tan {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**3/(d*tan(f*x+e))**(1/2),x)

[Out]

Integral(sec(e + f*x)**3/sqrt(d*tan(e + f*x)), x)

________________________________________________________________________________________